Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

38 Development of Compound-Laser Welding Method for Aluminum-Alloy Structure of Motorcycles

2002-10-29
2002-32-1807
A compound-laser welding method has been developed for the rapid three-dimensional welding of motorcycle aluminum-alloy structural parts. The term “compound-laser welding” means a high-speed welding method in which a number of lasers with different characteristics are arranged on the same axis. This paper reports the results of welding by a compound laser consisting of a YAG laser and a CO2 laser. It was found that compound-laser welding with two or more types of gases mixed as shielding gas gives a better welding performance than single-laser welding due to the advantages of the different lasers used in compound-laser welding.
Technical Paper

3D Beam Forming Measurements Using 3D-Microphone Arrays

2009-01-21
2009-26-0050
Traditional acoustic measurements inside any cavity have historically been conducted with a small number of microphones. By this means it is possible to gain information about parameters like frequencies, orders and sound pressures. However, a space-selective analysis is nearly impossible and it is not feasible to find the position of the sound sources in space in a practical way. While traditional beam forming systems with planar microphone arrays have enlarged the possibilities of acoustic measurements, they do not give comprehensive information about the sound sources in the entire vehicle interior. Therefore, the components of the Acoustic Camera of the GFal were extended by a spherical, acoustically transparent and omni-directional array. A new option is to map onto a common 3D-CAD-model of the object of interest, for instance a vehicle interior. The advantages and disadvantages of 2D- and 3D-mappings will be discussed in the paper.
Technical Paper

3D CFD Modeling of an Electric Motor to Predict Spin Losses at Different Temperatures

2024-04-09
2024-01-2208
With the advent of this new era of electric-driven automobiles, the simulation and virtual digital twin modeling world is now embarking on new sets of challenges. Getting key insights into electric motor behavior has a significant impact on the net output and range of electric vehicles. In this paper, a complete 3D CFD model of an Electric Motor is developed to understand its churning losses at different operating speeds. The simulation study details how the flow field develops inside this electric motor at different operating speeds and oil temperatures. The contributions of the crown and weld endrings, crown and weld end-windings, and airgap to the net churning loss are also analyzed. The oil distribution patterns on the end-windings show the effect of the centrifugal effect in scrapping oil from the inner structures at higher speeds. Also, the effect of the sump height with higher operating speeds are also analyzed.
Technical Paper

3D Computational Methodology for Bleed Air Ice Protection System Parametric Analysis

2015-06-15
2015-01-2109
A 3D computer model named AIPAC (Aircraft Ice Protection Analysis Code) suitable for thermal ice protection system parametric studies has been developed. It was derived from HASPAC, which is a 2D anti-icing model developed at Wichita State University in 2010. AIPAC is based on the finite volumes method and, similarly to HASPAC, combines a commercial Navier-Stokes flow solver with a Messinger model based thermodynamic analysis that applies internal and external flow heat transfer coefficients, pressure distribution, wall shear stress and water catch to compute wing leading edge skin temperatures, thin water flow distribution, and the location, extent and rate of icing. In addition, AIPAC was built using a transient formulation for the airfoil wall and with the capability of extruding a 3D surface grid into a volumetric grid so that a layer of ice can be added to the computational domain.
Technical Paper

3D Heat Transfer Analysis of a Moving Heat Source

2005-04-11
2005-01-1246
The paper will model a welding process as a moving heat source through the work piece and investigate the effectiveness of various pre-heating mechanisms, including moving heat sources and the thermal strips. The reduction of thermal conductivity in the material around the tool due to rising temperature will be considered in the study. The paper represents an initial attempt to develop a nonlinear, time-discontinuous, p-version Galerkin method for the study of thermal effects in the Friction Stir Welding (FSW) process. Numerical results and the topics for further studies are presented.
Technical Paper

3rd Generation AHSS Virtual and Physical Stamping Evaluation

2020-04-14
2020-01-0757
Developing lightweight, stiff and crash-resistant vehicle body structures requires a balance between part geometry and material properties. High strength materials suitable for crash resistance impose geometry limitations on depth of draw, radii and wall angles that reduce geometric efficiency. The introduction of 3rd generation Advanced High Strength Steels (AHSS) can potentially change the relationship between strength and geometry and enable simultaneous improvements in both. This paper will demonstrate applicability of 3rd generation AHSS with higher strength and ductility to replace the 780 MPa Dual Phase steel in a sill reinforcement on the current Jeep Cherokee. The focus will be on formability, beginning with virtual simulation and continuing through a demonstration run on the current production stamping tools and press.
Technical Paper

4000 F Oxidation Resistant Thermal Protection Materials

1966-02-01
660659
Coated refractory metals, coated and alloyed graphites, hafnium-tantalum alloys, refractory borides, and stabilized zirconias are considered for the 3600–4000 F high-velocity air environment. Only refractory borides and stabilized zirconias are indicated as offering long duration and reuse capabilities for such high-temperature utilization. Iridium, as coatings on substrates of either graphites or refractory metals, appears attractive for shorter times (less than 1 hr). Environmental evaluation and the need for a theoretical framework to enable the prediction of performance data for such materials are indicated to be major problems facing users and suppliers.
Technical Paper

430LNb - A New Ferritic Wire for Automotive Exhaust Applications

2000-03-06
2000-01-0314
The increasing use of ferritic stainless steels (AISI 409, 439, 436 and 441) in automotive exhaust systems, especially for manifolds and catalytic converter canning, has led the authors to develop a new ferritic welding wire, designated 430LNb. This new material is recommended for the GMAW and GTAW processes and provides better metallurgical compatibility with the ferritic base metals, in terms of both thermal expansion and microstructure. The composition of the new welding wire has been adjusted in order to guarantee an entirely ferritic structure in the welds of ferritic sheet materials, together with good resistance of the welds to both wet corrosion and high temperature oxidation, corresponding to the conditions encountered respectively in the colder and hotter parts of the exhaust line. This is achieved by limitation of the C (<0.02%) and N (<0.02%) contents, stabilisation with Nb, such that Nb > 0.05 + 7 (C + N) and Nb < 0.5%, and a Cr content of 17.8-18.8%.
Technical Paper

47 Development of a Titanium Material by Utilizing Off-Grade Titanium Sponge

2002-10-29
2002-32-1816
Titanium alloy for forging and pure titanium material for exhaust systems have been developed. The forging alloy will be applied to production of lightweight motorcycle frames and the pure titanium will be applied to improve engine performance. The materials have been made inexpensive by the use of off-grade sponge that includes many impurities for production of titanium ingot. Stable characteristics have been obtained by controlling oxygen equivalent after setting the volume of tolerable impurities by considering mechanical properties and production engineering. In spite of low-cost, the material provides the same design strength compared to conventional material, and enables parts production with existing equipment. A review of manufacturing and surface treatment processes indicated a reduction in the price of titanium parts produced with this new material.
Technical Paper

49 Development of Pb-free Free-Cutting Steel Enabling Omission of Normalizing for Crankshafts

2002-10-29
2002-32-1818
Crankshafts of motorcycles require high strength, high reliability and low manufacturing cost. Recently, a reduction of Pb content in the free-cutting steel, which is harmful substance, is required. In order to satisfy such requirements, we started the development of Pb-free free-cutting steel which simultaneously enabled the omission of the normalizing process. For the omission of normalizing process, we adjusted the content of Carbon, Manganese and Nitrogen of the steel. This developed steel can obtain adequate hardness and fine microstructure by air-cooling after forging. Pb-free free-cutting steel was developed based on Calcium-sulfur free-cutting steel. Pb free-cutting steel is excellent in cutting chips frangibility in lathe process. We thought that it was necessary that cutting chips frangibility of developed steel was equal to Pb free-cutting steel. It was found that cutting chips frangibility depend on a non-metallic inclusion's composition, shape and dispersion.
Technical Paper

5500 Ton Press - Forming Rear Axle Spindles

1962-01-01
620134
A five-year development program by the American Metal Products Co. to process stamped axle housings has culminated in the application of cold extrusion to spindles. The new process involved the installation of a 5500 ton press capable of driving a punch through a 20 lb billet, as well as modification and rearrangement of existing equipment. The system has not only resulted in considerable production savings but has also contributed to an overall expansion program. The company, although fully preoccupied with the basic spindle for production of axle housings, has already investigated other applications of the new equipment toward product diversification.
Technical Paper

56 Development of two-cylinder liquid-cooled utility gasoline engine models with twin balancer shafts

2002-10-29
2002-32-1825
The new small and lightweight 2-cylinder liquid-cooled OHC gasoline engines were developed. These new engines are featuring high output, low vibration and noise radiation and so able to improve the comfortableness and amenity of applied utility machines. In this paper, the features of the new engines and the process to realize development targets are introduced. The basic structure adopted on the new engines is a liquid-cooled, inline 2-cyilinder layout with 360-degree firing intervals, twin balancer shafts, and an overhead camshaft that is driven by a cogged belt. Also various parts made of aluminum alloy and plastics could make the engine lighter. By these measures, the new engines could satisfy their hardest development targets, and realize their easy installation, higher versatility, and have the excellent features such as compact size, lightweight, high output, low exhaust gas emission and low vibration and noise radiation.
Standard

8000 psi Hydraulic Systems: Experience and Test Results

2004-03-18
HISTORICAL
AIR4002
Shortly after World War II, as aircraft became more sophisticated and power-assist, flight-control functions became a requirement, hydraulic system operating pressures rose from the 1000 psi level to the 3000 psi level found on most aircraft today. Since then, 4000 psi systems have been developed for the U.S. Air Force XB-70 and B-1 bombers and a number of European aircraft including the tornado multirole combat aircraft and the Concorde supersonic transport. The V-22 Osprey incorporates a 5000 psi hydraulic system. The power levels of military aircraft hydraulic systems have continued to rise. This is primarily due to higher aerodynamic loading, combined with the increased hydraulic functions and operations of each new aircraft. At the same time, aircraft structures and wings have been getting smaller and thinner as mission requirements expand. Thus, internal physical space available for plumbing and components continues to decrease.
Standard

8000 psi Hydraulic Systems: Experience and Test Results

2012-11-15
CURRENT
AIR4002A
Shortly after World War II, as aircraft became more sophisticated and power-assist, flight-control functions became a requirement, hydraulic system operating pressures rose from the 1000 psi level to the 3000 psi level found on most aircraft today. Since then, 4000 psi systems have been developed for the U.S. Air Force XB-70 and B-1 bombers and a number of European aircraft including the tornado multirole combat aircraft and the Concorde supersonic transport. The V-22 Osprey incorporates a 5000 psi hydraulic system. The power levels of military aircraft hydraulic systems have continued to rise. This is primarily due to higher aerodynamic loading, combined with the increased hydraulic functions and operations of each new aircraft. At the same time, aircraft structures and wings have been getting smaller and thinner as mission requirements expand. Thus, internal physical space available for plumbing and components continues to decrease.
Technical Paper

980 XK: A Critical Automotive Application for HSLA Steel

1977-02-01
770215
Previous applications of 980 XK steels in the automotive industry have been limited. However, to meet increased structural requirements of MVSS-301, AMC has incorporated 980 XK steel in the 1977 Gremlin and Hornet underbody rear sill subassemblies. This paper emphasizes how formability and spot weldability characteristics were optimized in order to meet the vehicular crashworthiness required in this structural application. Traditional mild steel design, forming, and spot welding procedures were successfully modified to utilize 980 XK. These modifications are practical and have been successfully incorporated in production operations.
Technical Paper

A BIW Structure Research of Light Weight Vehicle with High Stiffness by Steel

2015-03-10
2015-01-0061
The focus of this paper is to develop an innovative vehicle layout and optimize vehicle body structure with the latest lightweight steel technologies, such as hydro-forming and hot stamping. Our BIW structure achieved a mass savings of 28 kg (−10%) compared to the mass of baseline BIW structure. (Base BIW : MD_Elantra)
Technical Paper

A Beginning Toward Understanding the Corrosion Resistance of Ferritic Stainless Steels

1993-03-01
930450
To date the market for P/M stainless steel has not developed appreciably, and has centered largely on the development of austenitic 300 series stainless steels. Although these stainless steels are noted for their resistance to corrosion in many media, it has been difficult for P/M parts fabricators to produce parts that will sustain 1,000 hours of protection in a 5% salt solution. The problem starts with the water atomized powders and continues with the sintering practice exercised to produce the parts. Reasons for lack of corrosion resistance, based upon these considerations, will be discussed. In addition, the ferritic stainless steels are being considered seriously for fuel injectors. These emerging applications derive from the corrosive environment that may become a problem if and when alternative fuels are introduced. P/M ferritic stainless steels may also assume a position as a corrosion resistant magnetic material required in ABS systems which are currently emerging.
Technical Paper

A Bench Test for the Evaluation of Silver-Steel Lubrication Properties of Railroad Diesel Oils

1969-02-01
690775
A pin and disc machine has been modified for the evaluation of silver-steel lubrication characteristics of railroad diesel oils. Use of silver pins on polished steel discs at selected loads and rubbing speeds allows good correlation with known engine behavior. In comparison with wear and friction data obtained by the four ball method, this pin and disc test gives better correlation with engine tests than the Modified Four Ball Test.
Technical Paper

A Benchmark Test for Springback Simulation in Sheet Metal Forming

2000-10-03
2000-01-2657
Springback is a serious problem in sheet metal stamping. It measures the difference between the final shape of the part and the shape of the forming die. Sheet metal forming simulation has made significant progress in predicting springback and several computer simulation codes are commercially available to predict and compensate for it in tool design. The accurate prediction of springback is important and there is a need to validate and verify those predictions with experimental results. Current validation techniques lack standardized procedures, require measurement fixtures that may impose unrealistic restraint on the part, require profiling equipment such as CMM or laser scanning and for the most part produce small springback which reduces measurement accuracy and increases experimental error. A benchmark test has been developed which addresses all these concerns and compares springback predictions by various numerical simulation codes with each other and with experimental results.
Technical Paper

A Benchmark Test for Springback: Experimental Procedures and Results of a Slit-Ring Test

2005-04-11
2005-01-0083
Experimental procedures and results of a benchmark test for springback are reported and a complete suite of obtained data is provided for the validation of forming and springback simulation software. The test is usually referred as the Slit-Ring test where a cylindrical cup is first formed by deep drawing and then a ring is cut from the mid-section of the cup. The opening of the ring upon slitting releases the residual stresses in the formed cup and provides a valuable set of easy-to-measure, easy-to-characterize springback data. The test represents a realistic deep draw stamping operation with stretching and bending deformation, and is highly repeatable in a laboratory environment. In this study, six different automotive materials are evaluated.
X